The time structure of atmospheric Cerenkov light in extensive air showers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 101259
(http://iopscience.iop.org/0305-4470/10/7/524)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:03

Please note that terms and conditions apply.

Corrigenda

A simple proof of the Perron-Frobenius theorem for positive symmetric matrices Ninio F 1976 J. Phys. A: Math. Gen. 91281

Part (iv) of the proof should read as follows.
Let (ω_{j}) be a real normalized eigenvector belonging to $\mu<\lambda$,

$$
\sum_{j} a_{i j} \omega_{j}=\mu \omega_{i}
$$

By the variational theorem,

$$
\lambda \geqslant \sum_{i j} a_{i j}\left|\omega_{i}\right|\left|\omega_{i}\right| \geqslant\left|\sum_{i j} a_{i j} \omega_{i} \omega_{i}\right|=|\mu| .
$$

If $\mu=-\lambda$, the above relation shows that $\left|\omega_{j}\right|=x_{j}$ for all j, and hence there is an i for which $\omega_{i}=x_{i}$. Adding $\lambda x_{i}=\Sigma_{j} a_{i j} x_{j}$ to $-\lambda \omega_{i}=\Sigma_{j} a_{i j} \omega_{j}$ gives

$$
0=\sum_{j} a_{i j}\left(x_{j}+\omega_{j}\right) \geqslant a_{i i}\left(x_{i}+\omega_{i}\right)
$$

which contradicts the fact that $a_{i i}>0$ and $\omega_{t}=x_{1}>0$. Thus $\mu \neq-\lambda$.

The time structure of atmospheric Cerenkov light in extensive air showers Böhm E, Bosia G, Navarra G and Saavedra O 1977 J. Phys. A: Math. Gen. 10 441-60

The vertical axis of figure 2 (p 443) should read 'Anode current (arbitrary units)' and this same axis should not appear in figure 19 (p 459).

The caption for figure 15 (p 456) should read as follows.
Figure 15. Calculated energy spectrum of bursts compared with measured frequencies. Calculated frequencies of bursts: 1 , protons; 2 , iron primaries (where (a) refers to residual primaries and (b) to secondaries); 6, threshold burst energies. Measured fluxes: 3, bursts + Čerenkov light $\left(\theta=1.5^{\circ}\right) ; 4$, bursts + C̆erenkov light $\left(\theta=4^{\circ}\right) ; 5$, bursts only $\left(\theta=20^{\circ}\right) . \theta$ is the assumed opening angle of the detector.

The fifth line of the second paragraph of appendix 3 (p 457) should read : . . (see figure 3)....

Also the equation at the bottom of p 458 should read:

$$
n(\alpha) \approx \exp \left(-\alpha / \alpha_{0}\right) \mathrm{d} \omega \cos ^{n}(\vec{\theta}+\vec{\alpha})
$$

32-vertex model on the triangular lattice

Sacco J E and Wu F Y 1975 J. Phys. A: Math. Gen. 8 1780-7
The factors $2 c, 2 d, 2 e$ in (21) should read $4 c, 4 d, 4 e$; the definitions of a and b in (22) should be interchanged; the third line in (22) should read $\Omega_{5} \Omega_{6}=$ $f_{16} f_{34}+\bar{f}_{16} \bar{f}_{34}+f_{0} f_{25}+\bar{f}_{0} \bar{f}_{25}$.

These changes do not alter any of the discussions and conclusions of the paper. We are indebted to K Y Lin and I P Wang for calling our attention to these corrections.

